Hippocampus as the storyteller: new study reveals how the brain makes sense of movies

By | News, Research | No Comments
Our memories are what makes each of us unique, but this unique set of experiences is precisely what makes scientific study of memory difficult. The cumbersome nature of neuroimaging tools doesn’t help. MRI (Magnetic Resonance Imaging) scanners are so large and heavy that they are often positioned in place and the housing is built around them. So how can the scientists study the brain during everyday realistic memory tasks? We have decided to use movies in our pursuit of brain mechanisms of memory for events, the so-called “episodic memory”.

Read More

New paper disentangles time and space in memory

By | News, Research | No Comments

It is essential for everyday life to remember not only the spatial relationships in our environment (‘My GP’s office is 500 metres south of the new fast food restaurant’), but also the temporal relationship between events (‘I got food poisoning after I had lunch at the new fast food restaurant’). In our new study, published in eLife, we show that remembering both kinds of information relies on similar neural mechanisms.

Spatial and temporal relationships are usually not independent of one another: If something is further away, it also takes longer to get there. Previous studies have shown that a brain region called the hippocampus is involved in both memory for spatial layouts as well as for temporal relationships, however, few studies have investigated the two dimensions simultaneously.

To investigate memory for time and space separately in the same experiment, we let participants navigate through a computer game-like virtual city (‘Donderstown’) in which they picked up different objects along a pre-defined route. Over time, participants learned which object was encountered where and when. Crucially, at certain points along the route, participants had to use teleporters, which immediately ‘beamed’ them to a different part of the city. This way, certain objects along the route could be very far apart in space, but be encountered closely after one another in time.

Using fMRI, we then monitored brain activity while participants watched these objects and examined which impact the newly learned spatial and temporal relationships between them had on the hippocampus. Interestingly, we found that – compared to a baseline scan before the virtual navigation – neural patterns in the hippocampus got more similar for objects which were remembered as closer together. This was true for both the spatial closeness, and for the temporal closeness between objects. Moreover, the effect was most pronounced when items were both spatially and temporally close.

Participants collected objects while navigating on different routes within a virtual city (shown from birds-eye view). Some parts of the city were connected via ‘beaming’-teleporters, transporting participants over long distances instantaneously. This way, objects that were far away in space could be encountered very closely in time. Using fMRI, we found that both temporal and spatial relationships change memory related brain patterns.

These findings lead us to believe that neural patterns in the hippocampus reflect a code for representing the relatedness of items or events – possibly along more dimensions than time and space. We propose that the hippocampus contains information of the inter-relatedness between different objects along many different dimensions in the form of an ‘event map’. In the future, it will be exciting to identify other domains which are represented in this way, such as degree of sympathy or emotionality of items. Eventually, this could help us to improve our understanding of neural mechanisms in psychiatric conditions, for example by investigating whether patients suffering from Major Depression might have a ‘skewed’ emotional event map.

For more information, see:

Deuker L, Bellmund JLS, Navarro Schröder T, Doeller CF (2016). An event map of memory space in the hippocampus. eLife

DOWNLOAD PDF

Contact: Jacob Bellmund
Research published in: eLife
Research conducted at: DoellerLab, Donders Institute, Radboud University
Research funded by: ERC, NWO

New paper shows grid-like entorhinal signals in imagination

By | News, Research | No Comments
How do we plan our way from A to B? Imagine you are planning your way home from your favorite café. You need to know both the location of the café and your home as well as the direction between them to find the best route. Imagining what you will see when exiting the café allows you to determine whether to turn left or right. Our new paper, published in eLife, shows that representations of facing direction and grid-cell computations play a role in mental simulation in service of navigational planning.

Read More

New paper in Nature Communications: Hippocampus combines fragments of memory

By | News, Research | No Comments

Episodic memories  are made up of different pieces of information, for instance where the event took place, who was there and when it happened. How does the brain combine these pieces into one coherent memory? In the latest study from our lab, we show that a specialized structure deep inside the brain, called the  hippocampus, plays a central role in this binding process. The results were published in the journal Nature Communications.
Read More

Follow us for more news TWITTER

For press inquiries

 

Get in touch with Lonja Schurmann

 +31 24 3610098